martes, 10 de marzo de 2015

Hipérbola








Hipérbola

Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución.

Ecuaciones de la hipérbola

Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas (0, 0) \, y ecuación de la hipérbola en su forma canónica.
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
Ecuación de una hipérbola con centro en el punto (h, k) \,
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1
Ejemplos:
a)
\frac{(x)^2}{25} - \frac{(y)^2}{9} = 1
b)
\frac{(y)^2}{9} - \frac{(x)^2}{25} = 1
Si el eje x es positivo, entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.

Resultado de imagen para hiperbola



No hay comentarios:

Publicar un comentario